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Solution of the eigenvalue problem of a N-level system coupled 
to a bosonic degree of freedom without using RWA 

N Klenner and J Weis 
Fakultat fur Physik, Universitat Freiburg, D-7800 Freiburg, West Germany 

Received 23 April 1985, in final form 28 July 1986 

Abstract. The eigenvalue problem of a N-level system coupled to a bosonic degree of 
freedom is solved without using RWA. For that purpose, the bosonic degree of freedom 
is transformed to Bargmann’s Hilbert space of analytical functions. In this representation 
the Schrodinger equation is a system of N coupled linear differential equations of first 
order. Using a discrete symmetry, these equations are simplified by a suitable transformation 
of the independent variable. Starting from the simplified equations, we develop a method 
to solve the eigenvalue problem of the N-level system. In addition, we present a simple 
approximate treatment and compare it with the exact results. The approximation turns 
out to be quite good up to outer level resonance and can be used to explain the differently 
structured regions in the energy spectra. 

1. Introduction 

In this paper we deal with the eigenvalue problem of the Hamiltonian 

f i  = b+b +$+a&( b+ + b )  + Sj,. (1.1) 

Here bf and b denote the creation and annihilation operators of the boson. jX, j, are 
components of the total angular momentum which satisfy the commutation relation 

A A  A 

[ J , ,  4 1  = iJ,. (1.2) 

The Hamiltonian (l.l):a!bejnterpreted in two ways. For a N-dimensional representa- 
tion of the operators J,, J,, J,,  the Hamiltonian describes the interaction of a linearly 
polarised mode of quantised electromagnetic field with a N-level atom in linear 
approximation. The distance between adjacent levels of the atom is always S. Therefore 
the atom and the field are in resonance for S = 1. In addition to ‘normal’ resonance 
we shall speak of ‘outer level resonance’ when S is 1/( N - 1). In a second interpretation, 
the Hamiltonian (1.1) can be used to discuss the interaction of a quantised field mode 
with N - 1 two-level atoms. For this purpose we write the collective atomic operators 
j i  in terms of the single atomic operators fa, (the ai are simply the Pauli matrices): 

n = l  

The collective atomic states can be expressed in terms of Dicke states (Dicke 1954) 
which are defined as follows: 
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1156 N Klenner and J Weis 

In this case j is the cooperation number and  a good quantum number since 

[ k, ?] = 0. (1.5) 

If we look only at the linear space L of states built up  by the N Dicke states 

KN- 11/23 m )  m = -( N -1 ) /2 , .  . . , ( N -  1)/2 (1.6) 

we find the same N-dimensional representation of the operators j ,  as above. By 
application of the Hamiltonian (1.1) the space L is not left. The development of an  
initial state in L is determined by the Hamiltonian (1.1). 

The eigenvalue problem of the RWA Hamiltonian 

(1.7) 

was discussed long ago (Tavis and Cummings 1968, 1969, Mallory 1969, Scharf 1970a, 
b). In the case of resonance ( 6  = 1) and small coupling ( K  << 1) the RWA Hamiltonian 
is a good approximation to the Hamiltonian (1.1). Recently, experiments have been 
carried out on Rydberg atom masers (Kaluzny et a1 1983, Raimond et a1 1982, Goy 
er a1 1982, 1983, Moi er a1 1983, Meschede er a1 1985). The coupling constant K is 
proportional to the square of the principal quantum number n. For Rydberg atoms n 
lies between 20 and 50 and therefore K is about three orders of magnitude larger than 
in low excited systems. For this reason we compare the energy spectrum of (1.1) with 
that of the RWA Hamiltonian, thereby testing the validity of RWA as a function of K .  

The Hamiltonian (1.1) is also of interest in another context. It was shown that the 
semiclassical equations which correspond to (1.1) lead to chaotic motion (Belobrov 
et a1 1976, Miloni et a1 1983). Therefore, as pointed out by Ackerhalt et a1 (1985), a 
fully quantised treatment of the N-level system would be interesting in connection 
with the discussion of 'quantum chaos'. For N = 2, Kus (1985) has considered the 
statistical properties of the energy spectrum to investigate this question. We will not 
discuss this point further. Instead we present the results of the fully quantised calcula- 
tion. Our treatment will be similar to the treatment of the two-level atom system by 
Reik et a1 (1985) and Klenner et a1 (1986). The main difference is that we arrive at 
three-term vector recurrence relations instead of three-term scalar ones in the two-level 
case. 

The methods we have used here to solve the eigenvalue problem of the Hamiltonian 
(1.1) turned out to be highly suitable for the calculation of exact isolated solutions of 
similar quantum optical systems (Kus and  Lewenstein 1986). 

This paper is organised as follows. In  § 2 the transformation of the bosonic degree 
of freedom to Bargmann's Hilbert space of analytical functions will be described 
(Bargmann 1961, 1962). Then the Schrodinger equation consists of a system of N 
coupled linear differential equations of first order. A discrete symmetry will be used 
to introduce a new independent variable. A solution of the eigenvalue problem of 
(1.1) will be given in 9 3. In 0 4, we shall present a simple approximate treatment of 
the N-level system. I t  works well for O <  6 < 1 / (  N - 1 )  (up  to outer level resonance). 
Finally, we shall discuss the differently structured regions in the energy spectra by 
means of the states which are used in the approximate treatment in P 5. This will lead 
to qualitative understanding of the N-level system up to resonance ( 6  = 1). 
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2. Formulation of the N-level Hamiltonian in Bargmann space: separation of the 
positive and negative parity states 

2.1. The N-level Hamiltonian in Bargmann space 

We introduce the Bargmann space method to treat the bosonic degree of freedom. It 
has already been used in the case N = 2 by Schweber (1967), Reik et a1 (1982, 1985) 
and Klenner et a1 (1986) to  discuss the eigenvalue problem and the dynamics of the 
Hamiltonian (1.1). 

The transformation of the boson degree of freedom to Bargmann's Hilbert space 
of analytical functions is as follows. The eigenstates of the number operator are 
mapped onto the powers of a complex variable 5 :  

(b+)"(O)+ 5". (2.1) 

b++ 5 b + d / d l  (2.2) 

Consequently one obtains 

so that the Hamiltonian and the eigenfunctions are written as 

(2.3) 

(2.4) 

Here we choose the states I j ,  m )  to be the eigenstates of the operator .?, (1, is diagonal): 

.tIj, m )  = mli, m )  m = -j ,  -j+ 1 , .  . . , j ( 2 . 5 )  

and j is ( N  -1)/2.  

of .?, is 
Since .?, and .?, are components of the total angular momentum operator, the action 

(2.6) I j ,  
1 ( - )  1 I + )  j ,  I j ,m) = i g m  Ij, m - 1 ) + sg + 1) 

with 

g',-'= [ ( j +  m ) ( j -  m + 1)11" 
g',"= [ ( j -  m ) ( j +  m + I ) ] " ~ .  

The Schrodinger equation 

AI*) = AI * )  (2.7) 
after collecting the components of 1 j ,  m )  ( m  = -j ,  - j  + 1, . . . , j ) ,  consists of N = 2 j  + 1 
coupled differential equations of first order: 

( < + + j - h ) 4 m ( i ) + f i K  <+- m d m ( l ) + t S ( g " l i d , - i ( l ) + g ~ ~ i d m + i ( l ) ) = 0 .  

(2.8) 
The component functions d,,,({) have to belong to the space of entire functions. These 
have a finite norm with respect to the inner product in Bargmann space defined by 

( c 3  

( f ig)  =: exp(-l5l2)f(5+)g(l) d Re 5 d Im l. (2 .9 )  
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This requirement determines the eigenvalues. The main advantage of the Bargmann 
space treatment lies in the fact that the Schrodinger equation (2.8) is a system of linear 
differential equations of first order only. This is due to the linear coupling of the atoms 
to the quantised field. 

2.2. Discrete symmetry of the N-level Hamiltonian: transformation of the, independent 
variable 

The Hamiltonian ( 1 . 1 )  has a constant of motion which is given by 

(2.10) 

and corresponds to a discrete symmetry. The operator A does not act on the bosonic 
degree of freedom and is given by 

/ o  . . .  0 1\ 

I (2.11) 

in the basis I j ,  m) .  Since 6' = 1 ,  the spectrum of @ is * 1. Therefore, the eigenfuncti9ns 
of the Hamiltonian can be IabeFed by the eigenvalues k l  of the parity operator P. 

The existence of the parity P as a constant of motion leads to a condition for the 
component functions 4, ( l ) .  From 

PI+)=$ m 2 = - j  4 m ( l ) l j ,  m)) 

= 2 4 - m ( - l ) l j , m )  
m = -J 

=* 2 d m ( l ) l i , m ) = * ~ + )  
m = -, 

we derive 

4 m ( l )  = * 4 - m ( - l ) *  
The upper (lower) sign stands for positive (negative) parity states. 

Now we introduce the functions 

F m ( l )  = d m ( l ) + 4 - m ( l )  
G m  ( l )  = 4 m  ( 5 )  - 4 - m  (5). 

Equations (2.14) show that 

F m ( C )  = F-m( l )  and G m ( l )  = - G - m ( i ' ) .  

Therefore we take into account only positive values of m. Then m = 0, 1,2,  
N odd and m =f, $, . . . , j for N even. Note that 

Fm ( 5) = * Fm ( -5) 
G m  (5)  = 'F G m  ( -5)-  

(2.12) 

(2.13) 

(2.14) 

, j for 

(2.15) 
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This means that Fm(C) is an even (odd) function of 5 and Gm( I )  is an odd (even) 
function of 5 for positive (negative) parity. Using the differential equations (2.8) we 
find the equations for the functions just introduced Fm(I) and G m ( I )  to be 

(5; + f - A )  F m  (5) -t f i ~ m  G m  (5) + 4 8 (gz! 1 F m  - I ( 5 )  + gr+! I F m  + I (5)) = 0 

Now we restrict ourselves to the states of positive parity. In this case, the functions 
F m ( I )  and Hm(5) = Gm(J) /5  are even functions of 6. For this reason, we introduce 
the new variable 

Z = J 2  (2.17) 
and transform the differential equations (2.16) to 

Compared with the differential equations (2.16) or (2.8), the set (2.18) has the advantage 
of leading to much simpler recurrence relations. This point will be discussed in more 
detail in 9 3. Additionally we will see how the positive and negative parity solutions 
can be obtained from equations (2.18). 

3. Solution of the eigenvalue problem of the N-level system 

3.1. N-dimensional two-term vector recurrence relations 

The advantage of using the differential equations (2.18) to solve the eigenvalue problem 
of the N-level system is that they lead to a N-dimensional two-term vector recurrence 
relation as we show in this section. This is equivalent to a three-term (N/2)-dimensional 
vector recurrence relation. In contrast to this, an expansion of the functions &(l)  in 
the variable 5 to solve the differential equations (2.8) leads to a N-dimensional 
three-term recurrence relation. In a sense, the dimensionality of the problem is reduced 
by a factor of two when equations (2.18) are used. The insertion of the expansion 

OD 

F m ( Z ) =  1 ~ Y z " + '  
n = O  

m (3.1) 
H m ( z ) =  1 h 7 ~ ~ + ~  

n=O 

in equations (2.18) leads to the following recurrence relations: 
[2(n +s)+t -h] f ;  + d ~ m [ 2 ( n  +s)+ 1]h7 + f i K m h Y - : _ ,  

+$ 8gln+l1f,m-1+$ Gg;:,f;+' = o  
[2(n + s) +$- ~ ] h ;  + d ~ m f ;  + 2 d ~ m (  n + s + ~)f;+~ + t  6g'+' m-I  h7-I 

+f 6g(,-!,hY+'=0. 
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As we mentioned beforefr  =L” and h r  = - h i ” .  Now assume N to be even. In this 
case, equations (3.2) can be written as a N-dimensional two-term vector recurrence 
relation: 

The Gik( n + 1) and f i i k (  n)  are (N/2)-dimensional matrices and 

(3.4) 

The matrices Q l k ( n +  1) and f i l k ( n )  have a simple structure: 

[ ~ , , ( n + l ) ] , , = [ 2 ( n + ~ + l ) + f - A + 6 g ~ / ~ A , / 2 ]  S , + f  Sg:I\/2 6, ,- ,+$ Sg:f_’,/2 61,+l. 

Here 

1 i = l  
0 otherwise. 

Moreover we find 

Except for f i , , ( n +  1) and fi22(n),  all these matrices are diagonal. The indicia1 
equation, which determines the lowest order coefficients of the expansion (3 .1) ,  becomes 

(3.6) 

A non-trivial solution of (3.6) exists, when the determinant of the matrix of the LHS 

is zero. This is the case for s = 0 and s = -4 as can be seen from equations (3.5). The 
solution is not unique for both values of s. There are N / 2  linear independent solutions 
of equation (3.6) in both cases. What changes now when N is odd? Then the first 
equation (3.2) combines only the expansion coefficients of zn+’  and the second equation 
vanishes identically for rn = O .  Therefore, equations (3.2) result in a ( N -  
lbdimensional two-term recurrence relation. Since ( N  - 1) is even, this vector recur- 
rence relation takes the same form as equation (3.3). So, there is no change in the 
analysis when N is odd. 
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3.2. Solutions of both parities 
Now we discuss the physical relevance of the solutions corresponding to the two values 
of s. As mentioned, the functions Fm( 5 )  and G, ( 5 )  = 5Hm(  5 )  should be entire functions 
in 5. For s = 0, there is no branch point and no pole of F m ( l )  and Gm(5) at the origin. 
For s = - i  it seems that the expansion of F,(5) starts with 1 /5  in contrast to the 
expansion of Gm(5) which starts with lo, but this is prevented by the initial condition. 
For s = -4 we have T12,~(0) = 0 and the initial condition is 

f o  = 0 ho arbitrary. (3 .7)  
Therefore, the F,( 5)  starts with lo and similar to s = 0 there is no branch point and 
no pole at the origin. Provided that the expansion (3.1) is convergent in the whole 5 
plane, both values of s lead to a physical solution. 

We now show that positive parity states result from s = 0, whereas the negative 
ones arise from s = -f. This becomes clear when the expansion (3.1) is written in the 
variable 5, also taking into account equation (2.15): 

s = o  s = -1 

(3.8) 

ot e 
Hm(l)= hY52n+1 H m ( l ) =  1 h,"12". 

n =o n=O 

Although initially constructed for positive parity states only, equation (2.18) now leads 
to solutions of both parity. 

3.3. Solution of the eigenvalue problem 
We are going to describe the procedure used to solve equations (3.3). In  order to 
motivate it, we eliminate h,,] and h, from (3.3) to obtain the (N/2)-dimensional 
vector recurrence relation 

......................... 12.0 

0 

V 

4 

-I r I I 
0 0.5 1 .o 1.5 2 0  

i i 2  

Figure 1. Energy spectrum of N-level system for positive parity as a function of the square 
of the coupling constant for N = 3 and 6 = 1 .  
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fz.0 

8.0 

V 

Ir.0 

. ...- .e*- 

...-... - ...e'. 
0 __c_____I 1' 

I 

0 0: 5 1.0 1 .s 2.0 
K2 

Figure 2. As figure 1, but for N =4. 

I 
r I , 1 

0 0.5 1 .o 1.5 
U2 

Figure 3. As figure 1, but for N = 5 .  
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4 
0 0.2 0.L 0.6 0.8 1.0 

K2 

Figure 4. As figure 1, but for N = 6 .  

0 0.5 1.0 1.5 2.0 
U2 

Figure 5. As figure 1, but for S = i. 

This recurrence relation is assumed to terminate for a given value of n: 

This leads to 
h+, = o  i = O , 1 , 2  ,.... 

A 

A,(n- l ) f , - ,=O 

.liz(n-2)fn-*+~3(n-2)f,_,=0 (3.10) 

If A3( n - 1) # 0, all 4 have to be zero-but this is the trivial solution only. On the other 
hand, if L 3 ( n  - 1) = 0, this leads to an exact non-trivial solution. The recurrence relation 
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/...' ..+<*. --. ........... i; ......... .......... 

0 0.5 1.0 1.5 2 0  
Y *  

Figure 6. As figure 2, but for S = i. 

I.,. L: ....:: : ..._ .............................. -...".."..".".-..."....I. ........ 
...... .................. .."...... ".."...."......"." .....-. "..."......"......".... 

0 0.5 1.0 1.5 
I(? 

Figure 7. As figure 3, but for S = a .  

has the following infinite behaviour: 

lim A, (n )  =o. 
n-3i  

So, neglecting the first equation of (3.10) for sufficiently large n, an approximate 
solution of the eigenvalue problem of the N-level system is obtained. The second 
equation of (3.10), equivalent to 

L=O (3.11) 
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12.0 

8.0 

V 

4 . 0  

I , , 1 

X 2  
0 0 .2  0 .4  0.6 0.8 1.0 

Figure 8. As figure 4, but for S = f .  

is a condition to terminate the recurrence relation. Our procedure is the following: 
the recurrence relations (3.3) are written as 

(3.12) 

The matrices I?,,(n) can be calculated explicitly and are given in the appendix. As 
mentioned before, there are N/2 linear independent solutions of the indicia1 equation 
(3.6): 

i = 1 , 2 , .  . . .  N / 2 .  

The vectors 

(3.13) 

(3.14) 

are calculated by repeated application of (3.12). They are still linearly independent, 
because the determinant of the matrix in equation (3.12) is unequal zero for all n. As 
fn+, should be zero, the vectors (3.14) have to form a linear combination satisfying 

(3.15) 

In other words, the initial vectors (3.13) have to be combined in such a way that the 
repeated application of (3.12) leads to 

"t, = 0. (3.16) 
The condition for a non-trivial solution of (3.15)-that means a , ,  a 2 , .  . . .  a,,,# 0-is 

(3.17) 

Since this is a function of K, S and the energy A, it determines the energy eigenvalues. 
det(("+l)l(L+l)z~ ' .  ("+I),,*) = 0. 
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Table 1. Accurate decimal places of the energy eigenvalues. Used parameters: N =4, 
6 =  1. K = 1. 

n 

i 15 20 25 30 

0 12 12 12 12 
5 7 12 12 12 

10 4 9 12 12 
15 1 6 12 12 
20 0 4 1 1  12 
25 0 2 8 12 

The accuracy of this procedure depends on the number of iterations n, the excited 
state i and the parameters used, K and S. Table 1 displays this dependence for N = 4 
and a typical combination of the parameters K and S. 

We calculated the energy spectrum of positive parity for N = 3,4,5 and 6 as a 
function of K’. Figures 1-4 present the energy spectra for ‘normal’ resonance (S = 1) 
whereas figures 5-8 show those for ‘outer level resonance’ (S = 1/( N - 1)). For reasons 
of better representation we plotted U = A + 2 ~ ’ j ’  against K ’ .  

4. A simple approximative treatment of the eigenvalue problem of the N-level system 

In this section a simple approximate treatment of the N-level system is developed on 
the basis of the exact solution for 6 = 0. It is a generalisation of a perturbative treatment 
which has already been worked out for N = 2 by Graham and Hohnerbach (1984). 

The Hamiltonian (1.1) can be written in Bargmann space as (see § 2) 

A = A0+S.?, 
with 

(4.1) 

The solution of the eigenvalue problem 

fiol4) = 4 4 )  (4.2) 

is given by 

l 4 ) n m  = 4 n m ( l ) 1  i, m> 

d,,,,,(l) = ( 1 / 4 2 )  exp(-K’m’)(l+&m)” exp(--tKmp) 

E,, = n - 2( Km)’. 

(4.3) 

(4.4) 

(4.5) 

The bosonic component function 4,,,,,(l) describes the nth eigenstate of a displaced 
harmonic oscillator. The displacement in configuration space is - 2 ~ m ,  the energy 
spectrum for a given value of K’ being at least two-fold degenerate. 
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For reasons of simplicity we restrict our calculations to the four-level atom. 
However, the generalisation to arbitrary level number N will be discussed in $ 5. For 
N = 4 and 8 = 0, K = 1 the solution (4.3)-(4.5) is illustrated in figure 9. 

Each atomic wavefunction I j, m) determines a harmonic potential for the bosonic 
degree of freedom. The potentials belonging to k m  lead to the twofold degeneracy 
mentioned above. These degznerate eigenstates can be superposed so that they become 
eigenstates of the operator P. The result is 

Ix): = (1/dZ3) exp(-K2m2)[(l+fiKm)" exp(-fircml)lj, m) 

*(-1)"(l -JZKm)" exp(fiKml)lj, -m)] (4.6) 

w i t h m = f , i a n d n = 0 , 1 , 2  ,..., f o r N = 4 .  
From the construction, the states (4.6) satisfy the equations 

fi0Ix)Z = &",IX)jt:m) 

FIX)% = *lx)jt:m). 

For an approximate calculation of the energy eigenvalues of (1.1) we choose the 
following ansatz: 

I$)!? = 4 3 x ) % 2 +  /3j*)IxW2. (4.7) 

The integer n labels the excitation in the m = *+ potential, whereas I is a pointer for 
the excited state in the m = *; potential which is energetically nearest to the nth excited 

-312 

-10.0 -5.0 0 5.0 10.0 
0 

Figure 9. Illustration of the solution of the eigenvalue problem of the four-level system 
for 6 = O  and K = 1. 
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state of the inner potential. For example, for K = 1 and n = 1 I is equal to 5 (see figure 
9). The general connection between I and K' (for the four-level system) is 

I = n + k  

k = / '  0 

2 (4.8) 

The insertion of the ansatz (4.7) into the Schrodinger equation 

fjl4)?'= AI$):' (4.9) 

leads to 

In order to obtain a non-trivial solution the determinant of the matrix in (4.10) has to 
be zero. This condition determines the approximate energy eigenvalues: 

n + I -  5 K 2  + ~z!2(xl.?zl,y)z)z + 
2 

A long but elementary calculation shows that 

(4.11) 

Table 2. Comparison of exact and approximate treatments. 

S = I  S = l  

Level number A,,, A,, Am*x A*\ 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
I O  

0.070 
0.054 
0.050 
0.079 
0.057 
0.059 
0.039 
0.019 
0.027 
0.027 
0.023 

0.030 
0.028 
0.024 
0.03 1 
0.020 
0.019 
0.019 
0.010 
0.010 
0.014 
0.010 

0.495 
0.340 
0.253 
0.452 
0.539 
0.461 
0.405 
0.284 
0.246 
0.278 
0.299 

- 

0.172 
0.148 
0.141 
0.180 
0.165 
0.158 
0.165 
0.102 
0. IO3 
0.119 
0.115 
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The approximate energy spectrum (4.11) is complete for k = 0 only. In general, 
there are k states in the m = *+ potential which are not taken into account by (4.11) 
(see figure 9). But since SJ, connects only adjacent potentials, the low-lying states in 
the m = *+ potential are not disturbed very much. So we assume them to be given by 
(4.6) with the corresponding energy being (4.5). 

and S = 1 is presented in table 2. Here Amax is the modulus of the maximal difference 
in the K *  range 0 S K *  s 2 .  On the other hand, A,, is the average of the moduli of the 
differences which were calculated in the K *  range O S  K ’ S  1 for S = $ and O s  K ~ S  2 
for S = 1 with a stepwidth of 0.1. 

The difference between the approximate and exact energy spectra for N = 4, 6 = 

5. Discussion 

In this paper we have presented energy spectra for the N-level system ( N  = 3,4,5,6) .  
The comparison of the corresponding RWA energy spectra with them shows that RWA 

is even in resonance ( 6  = 1) a good approximation only for small values of K *  (see 
figures 10-13). I t  is interesting that the K’ range within which RWA is valid decreases 
with increasing N.  

4 . 0  

V 
............ 

2 0  

................. 

0 

0 0.10 0.20 0.30 
K 2  

Figure 10. Comparison of exact and RWA energy spectra for N = 3, S = 1 and positive 
parity. (The full curves are the R W A  eigenvalues.) 

In P 4 we worked out a simple approximate treatment of the eigenvalue problem 
for the special case N = 4. This approximation will now be generalised for arbitrary 
even N.  There are N harmonic potentials which are determined by the atomic 
wavefunctions I (  N - 1)/2, m )  for S = 0. The eigenvalues of the potentials belonging 
to * m  are gegenerated. From the corresponding energy eigenstates, those of the parity 
operator P can be constructed, which are given by (4.6), but now with m = 
1 3  2 ,  2 ,  , . . , ( N  - 1)/2. Just as for N = 4, we assume that the first k, low-lying states of the 
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I I 
0 0.10 0.20 0.30 

U2 

Figure 11. As figure 10, but for N = 4. 

- 2 . 0  I I 
0.x) 0.20 0.30 

U2 
0 

Figure 12. As figure 1 1 ,  but for N = 5 .  

*( N - 1)/2 potential are not influenced. Above, there is a region where k2 states of 
the *( N - 1)/2 potential are mixed with k2 energetically neighbouring states of the 
*[( N - 1)/2 - 13 potential. In the next higher region there is an ‘interaction’ of three 
different types of states. Finally, all N / 2  different types of states have to be taken 
into account, and only the energetically most neighboured, coming from different 
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0 0.10 0.20 0.30 
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Figure 13. As figure 12, but for N = 6 .  

potentials, are mixing. Of course, the degree of excitation and the integers 
k,  , k 2 , .  . . , kN12 are dependent on the interaction constant K. 

Summarised, the approximation leads to the following scenario: for given value of 
K', there are Nf 2 different regions in the energy spectrum. The most low-lying region 
is a harmonic oscillator spectrum. In the next region two harmonic oscillator states 
are mixing, thus leading to a two-state structure in the energy spectrum. The region 
above shows three states, and so on. The size of the different regions is linearly 
increasing with K * .  

We showed in 9 4 that with the approximation good results for arbitrary values of 
K' can be gained up to the outer level resonance. It is obvious from the construction 
that this approximation will improve for increasing values of K*. The different regions 
discussed above can easily be distinguished fom each other up to resonance (see figures 
2 and 4). In this way the approximation leads to a better qualitative understanding 
of the eigenvalue problem of the N-level system. For odd N, an approximation can 
be constructed in a similar way, with the only difference being that the m = 0 potential 
is not degenerate. 

Appendix. The matrices kij(n) 

The matrix appearing on the LHS of equation (3.3) can be in!erted explicitly because 
of the simple structure of the (N/2)-dimensional matrices M,,(n + 1). Therefore it is 
possible to calculate the (N/2)-dimensional matrices R,( n )  of equation (3.12): 

( R I z ( ~ ) ) , ,  = [ l / ( f iK)I[ l / (n  + S + 1)1{[(2(n + S )  +: - A )/(2i - 1)  -A,(a/4)g:T:] a,, 
( R l l ( n ) ) ,  = f r l / ( n + s + l ) ]  8, 

+[(m)g!;1,2/(2i - 111 8 y - 1  +[(8/2)g:'j,2/(2i - 111 8,+J 
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where 

i = l  
i , j =  1 , .  . . , N / 2 .  

1 
A,  =io otherwise 
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